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Abstract
We propose a scheme for quantum state transfer (QST) between two
qubits, which is based on their individual interaction with a common boson
environment. The corresponding single-mode spin-boson Hamiltonian is
solved by mapping it into a wave propagation problem in a semi-infinite ladder
and the fidelity is obtained. High fidelity occurs when the qubits are equally
coupled to the boson while the fidelity becomes smaller for nonsymmetric
couplings. The complete phase diagram for such an arbitrary QST mediated
by bosons is discussed.

PACS numbers: 03.67.Hk, 05.60.Gg, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most interesting problems in the area of quantum information is how to transfer
a quantum state from one location to another. For example, QST from A to B can be
done via quantum teleportation [1] only if a prior connection between the remote places is
established by letting A and B have one from two auxiliary entangled qubits. A more direct
method should involve flying qubits, usually photons in optical fibers, which can send directly
quantum information between two distant locations of a quantum computer [2]. However, the
latter approach would be very difficult to realize experimentally since it requires an interface
between the optical system and the hardware where a quantum computation takes place. A
very successful QST was pioneered in [3] which includes the locations A and B and also
the quantum transfer ground into the same system. In this case the quantum information
of the qubits at one end of the chain propagate via the interaction between the components
of a permanently coupled physical system or a quantum graph. A perfect or nearly perfect
QST occurs between two local spins in quantum spin chains and networks, at least for short
distances [3–6]. The protocol for such a quantum communication relies on the fact that the
auxiliary device which plays the role of the quantum channel or quantum bus is the medium
itself. For example, the exchange interactions of a quantum spin chain can allow transfer of
quantum information between qubits which belong to the first and last local spins while the
rest of the chain acts as the quantum channel. In this case the exchange of information is
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BA

E

Figure 1. The proposed protocol for a QST between two qubits A and B represented by two-level
systems which interact with a common bosonic environment E which acts as the quantum transfer
channel.

achieved via magnon elementary excitations. Physical devices for such QST could be built,
at least in principle, and since no external control is required they can overcome possible
decoherence mechanisms.

In this paper we show that a boson environment could be used to transfer efficiently a
quantum state by acting as a quantum channel. It is known [7] that entanglement can be
introduced between two qubits if both are independently coupled to a common heat bath with
many degrees of freedom. We shall show that even the simplest possible boson environment
which consists of one mode can also provide an efficient QST mechanism. For this purpose
a spin-boson Hamiltonian is introduced [8, 9] known for many applications in physics and
chemistry. A closely related model involving the exchange of quantum information and
entanglement between two harmonic oscillators through a bosonic or spin-ring data bus was
proposed in [10, 11]. A spin-boson model allowed Caldeira and Leggett [12] to study
decoherence via dissipation through a weak coupling of the spin to many bosons, representing
a universal realization of a physical environment. In the case of weak spin-boson interaction
the excitations within the boson heat bath could be ignored and the problem can be solved
leading to decoherence. Our spin-boson model can be regarded as an extension of [7] where
two qubits coupled to a common heat bath become entangled with each other. We show that
despite the absence of a direct interaction between them their coupling to a simple boson
environment mediates an efficient QST. Environment mediated quantum control for a related
multi-mode system has been performed in [13].

The proposed spin-boson model allows high fidelity QST between two distant locations by
choosing suitable parameters. In order to make the problem tractable we choose the simplest
possible quantum channel which consists of a single-mode boson environment. This is the first
approximation to a full multi-mode Hamiltonian considered in [8] by replacing the coupling
to many modes by coupling to a single effective boson. Our study proceeds as follows: in
section 2 the proposed spin-boson model is introduced with a double two-level system
Hamiltonian coupled to a single boson. In section 3 a formula is derived for the fidelity
of a QST which is obtained by mapping the system onto a wave-propagation problem in
a semi-infinite ladder. The results of our calculations with the display of the corresponding
phase-diagram and a discussion about the efficiency of the scheme follow in section 4. Finally,
in section 5 we discuss possible improvements, extensions and applications.

2. Model and average fidelity

The studied system is illustrated in figure 1. The qubits A and B are not directly coupled
with each other but are connected via an auxiliary boson environment E both having nonzero
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interaction with E. The qubits in A and B can be represented by two local spins and E acts as
the quantum channel. Of course, if E is replaced by a quantum spin chain the model reduces
to the one studied in [3]. The Hamiltonian (h̄ = 1) is given by the sum

H = ω0
Aσ z

A + ω0
Bσ z

B + ωb†b + λA(b + b†)σ x
A + λB(b + b†)σ x

B,

with the qubits in A and B modeled by two-level systems of separations ω0
A, ω0

A, the quantum
channel described by a single-boson mode environment of frequency ω and nonzero linear
couplings λA and λB exist between the qubits and the boson channel E, with σx/y/z the
corresponding Pauli matrices. Note the similarity of H to a multi-mode model used to study
entanglement between the qubits in quantum control theory [13]. The main differences
between the present study and [7, 13] lie in the number of modes and the presence or absence
of couplings between the qubits and the quantum channel. We consider the nonzero spin-boson
couplings λA and λB since they are expected to be comparable to the two-level separations ω0

A

and ω0
B .

The single-mode Hamiltonian H, although simple enough, cannot be solved exactly.
The Hilbert space consists of a direct product of three parts with basis states |ηA, ηB,m〉,
where ηA/B = 0, 1 label the qubits and m = 0, 1, 2, 3, . . . is the single phonon excitation
number of the states in the quantum channel. The QST in this system can be studied
similarly to that in a spin network [3]. Suppose that at time t = 0 an unknown state
|ψA〉 = cos(θ/2)|0〉 + eiφsin(θ/2)|1〉 with parameters θ , φ, is generated at qubit A and has
to be transferred to B. We also initialize the state of the qubit B to |0〉 and the state of the
quantum channel E to its lowest boson state |0〉. The initial state of the whole system is
|ψA, 0, 0〉 which is separable. When evolution takes place the final state at time t in general
becomes a non-separable mixed state. The measurement of the state of qubit Bis described by
its reduced density matrix and both the efficiency and the quality of quantum communication
can be obtained by evaluating the corresponding fidelity [3].

The fidelity is usually computed by taking average over all pure input states |ψA〉 in their
corresponding Bloch sphere

F(t) = 1

4π

∫
d	〈ψA|ρB(t)|ψA〉,

where the state of A to be transferred is |ψA〉, ρB(t) is the reduced density matrix of the qubit
B at time t and the average is over all initial |ψA〉. If we let the system evolve for a period of
time T , one can find the maximum average fidelity Fm from the time taken for the average
fidelity to reach its first peak corresponding to the maximum fidelity. The peak time tp is
the second important quantity which can characterize a quantum channel, the first being the
average fidelity Fm. High fidelity implies better quantum channel for QST while shorter time
to reach the peak means faster QST. If Fm becomes exactly unity we have perfect QST1 with
the quantum state transferred from A to B without any loss of quantum information.

The reduced density matrix for qubit B can be written as

ρB = TrA,E[ρt ]

by tracing out A and E of the evolved total density matrix ρt = U(t, 0)ρ0U(0, t), with initial
value ρ0 = ρA ⊗ ρB ⊗ ρE and time evolution operator U(t, 0) = eiHt . This allows us to
calculate the average fidelity for any time t, which from now on we shall simply call fidelity.
As it stands this formula is rather complicated to perform an analytic evaluation. In the next
section the problem is mapped onto an equivalent wave propagation involving two ladders and
the corresponding fidelity is written as a function of waves propagating in these ladders.

1 An average fidelity equal to unity means the final state is different from the initial state to be transferred by a phase
factor. Since this phase is known via a simple rotation the final state becomes exactly the same as the initial state.
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Figure 2. The equivalent problem of wave propagation in ‘+’ and ‘−’ ladders. The nodes denote
the basis states and the lines the hoppings with the green lines

√
m(λA + λB), the blue lines√

m(λA − λB), the red lines ω0
B + ω0

A and the black lines ω0
B − ω0

A with on-site energies ωm.

3. Wave propagation

A parity symmetry present in H simplifies the Hamiltonian [9] making it block-diagonal in a
suitable two-qubit Bell states basis

|�±,m〉 = 1√
2
(|00m〉 ± |11m〉) |�±,m〉 = 1√

2
(|01m〉 ± |10m〉),

where |0〉 and |1〉 stand for the eigenstates of σx . The Hamiltonian which acts on this basis
gives

H |�±,m〉 = ωm|�±,m〉 +
(
ω0

B ± ω0
A

)|�±,m〉 +
√

m(λA + λB)|�∓,m − 1〉
+

√
m + 1(λA + λB)|�∓,m + 1〉

H |�±,m〉 = ωm|�±,m〉 +
(
ω0

B ± ω0
A

)|�±,m〉 +
√

m(λA − λB)|�∓,m − 1〉
+

√
m + 1(λA − λB)|�∓,m + 1〉.

The states split into two, having zero matrix elements between each other and the block-
diagonal Hamiltonian matrix is illustrated via two decoupled ladders in figure 2. The states
are represented by nodes and the hoppings between nodes by the connecting lines. Note that
the ladders in figure 2 are rather similar to each other, the only difference being the ordering
of red and black lines. This was very helpful for our calculation (given in the appendix) since
on this basis the computations simplify.

The obtained formula for the fidelity can be written in the form

F = 1

24

∑
m

(
Tr

[
A†

mAm

]
+ Tr

[
B†

mBm

]
+ Tr

[
C†

mCm

])

with

Am = fm(+, t) + σ zfm(−, t) Bm = fm(+, t) + (−iσy)fm(−, t)σ x

Cm = σ z1fm(+, t) +
σ +

2
fm(+, t)σ x +

σ−

2
fm(−, t) + σ z2fm(−, t)σ x

σ z1 =
(

1 0
0 0

)
σ z2 =

(
0 0
0 −1

)
,

where σ +,−,z are the Pauli matrices and fm(±, t) is the propagator in the ladders shown. In the
notation used, e.g., f3(+, 2) means the propagator from m = 0 to slice m = 3 at time t = 2
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Figure 3. The convergence of the average fidelity F(t) as a function of the maximum phonon
number m: (a) symmetric case with λA = λB = 1.0 and ωA = ωB = ωS where the parameters in
parentheses on the right of the figure are (t, ωS), and (b) non-symmetric case where the parameters
displayed in parentheses are (λA, λB, ωA, ωB). The maximum time is set at T = 32000.

in the ladder with parity ‘+’. This gives the fidelity of QST written as a linear combination of
the propagators in each of the two ladders.

Since both ladders are semi-infinite the corresponding Hilbert spaces must be truncated
at a maximum phonon number m. In order to approximate propagation for a very long time
long ladders with large maximum m are required. However, a careful study of the formula
shows that the fidelity simply arises from the difference between the propagators in the ladders.
For example, for ωA = 0 or ωB = 0 the two ladders are the same and the fidelity becomes
precisely zero. Since their structure is rather similar, except for the ordering of lines, if a
wave reaches very far from the origin in one of them a very small difference between the two
propagators is expected with no contribution to the fidelity. Therefore, accurate computations
of the fidelity do not require very long ladders and reasonable maximum m suffices, as it can
be seen from figure 3.

The accuracy of the computed results is shown in figure 3(a) by plotting the fidelity
as a function of the maximum phonon number m for the symmetric case with λA = λB =
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λS, ωA = ωB = ωS and in figure 3(b) for the non-symmetric case. The fidelity is shown to
converge very rapidly for the maximum phonon numbers m = 40 or 50 which permits us to
use reasonable coupling strengths. The convergence does not depend on time T and is rather
insensitive to ωA/B depending mostly on the couplings λA/B . For example, the numerical
results for λS = 1.0 and λS = 2.0 required only m = 40 to 50 and more than m = 100,
respectively. In our computations suitable maximum m was chosen according to the values of
λA/B and the convergence was checked by varying m. For couplings λ up to 2 and frequencies
ω up to 80 a maximum phonon number m between 50 to 110 turned out to be sufficient.

4. The phase diagram

The quality of QST is determined by the maximum of the average fidelity Fm in the time
period from 0 to T and the time for occurrence of the first peak tp when the system reaches its
maximum. Higher fidelity means more faithful state transfer while the shorter peak time tp
implies faster state transfer. The parameters ωA,ωB, λA and λB are all in units of ω = 1, while
the maximum fidelity and the first peak time are obtained in the time interval [0, T = 32×103].

4.1. Symmetric couplings

The phase diagrams of the maximum fidelity and the first peak time are shown in figures 4(a)
and (b) as a function of two parameters ωS = ωA = ωB and λS = λA = λB . They are divided
into the following three regions:

Region I: a weak coupling region which lies in the upper left corner of figure 4(a) where
ωS � λS . In this case the corresponding first peak time tp shown in figure 4(b) is large
equal to the upper bound of the chosen time interval T. In other words, the fidelity never
reaches its maximum within the adopted evolution time. This indicates that probably a
higher fidelity might occur for even longer times so that we can call this a ‘slow region’.
We may conclude that a good state transfer is impossible in this region because of the
long time tp needed.
Region II: lies in the lower part of the figure, which is too small to be seen in figure 4(a)
and this plot is magnified in figure 4(c). In this region ωS and λS are of the same order of
magnitude so that the fidelity is again low but for a different reason than that of region I.
The first peak time in this case from figure 4(b) is less than T and the QST is affected by
increasing ωS . For zero ωS no QST is possible while it becomes better when increasing
the qubit-environment coupling λS .
Region III: the rest of figure 4(a). One can see that in the majority of this region high
fidelity occurs with the first peak time mainly less than 5 × 103. This region corresponds
to a two-valley Hamiltonian and the system behaves as a good quantum channel.

4.2. Non-symmetric couplings

We have also considered the non-symmetric case where the two couplings and the two
frequencies are not equal. The influence of a deviation from equal couplings is studied
by choosing λS = 0.8, ωS = 20.0 with the corresponding point of the symmetric phase
diagram belonging to region III having very high fidelity equal to 0.998. A small deviation δω

in ωB with ωB = ωA + δω is shown in figure 5(a) to influence dramatically the QST, which is
extremely sensitive even for deviations of the order of 10−4. The asymmetry in the coupling
constants in figure 5(b) has a much smaller effect.
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Figure 4. Phase diagram for the fidelity of QST. (a) The phase diagram of the maximum fidelity as
a function of equal couplings λS and equal qubit separations ωS . Three regions can be distinguished
as explained in the text. (b) The first peak time of the QST as a function of the equal couplings λS

and the qubit separations ωS . This picture also has the three regions mentioned in the text. (c) The
region II of figure 4(a) is shown in some more detail.
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Figure 5. The maximum of the average fidelity Fm = 0.998, a value close to a perfect QST,
becomes lower for deviations from equal frequencies ωA = ωB = 20.0 and equal couplings
λA = λB = 0.8, with δω = ωB − ωA and δλ = λB − λA, respectively. The Fm is obtained in the
region [0, T = 33 × 103].

The sensitivity of the obtained fidelity on the symmetry of the two qubits can be understood
as a consequence of the total energy conservation. Since the essential condition for a perfect
QST is a separable final state the symmetric configuration is more favorable because in that
case the energy, which is equal to its initial value, leads to a factorized final state simply by
swapping the initial quantum state between qubits A and B. During the evolution the initial
total energy E = 〈ψ |H |ψ〉 = ωA cos(θ) becomes E = ωB cos(θ) + · · · making it obvious
why the asymmetric case ωB � ωA does not favor perfect QST. Clearly, any deviation from
the symmetric case via mismatch of the two qubit frequency separations or their couplings to
the boson decreases the corresponding fidelity, making more difficult the QST.

5. Discussion–conclusions

Although the role of an environment for a quantum system is usually that of causing
decoherence the entanglement between the system and the environment also signals the
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possibility of quantum information transfer via the environment. We suggest a QST between
two qubits via a coupling to a common bosonic medium which acts as the quantum channel. We
have derived a formula for the fidelity of the corresponding QST by mapping this into a wave
propagation problem, which is much easier to understand and solve. For symmetric couplings
or equal frequency separations, high fidelity QST between the two qubits is obtained for a wide
range of parameters. We show that small deviations from this symmetry can dramatically lower
the QST. This result can be easily understood as a consequence of the total energy conservation
during the evolution.

The obtained fidelity for the suggested QST protocol can be further improved by
optimizing the proposed settings such as encoding the initial state. This can be done
as proposed in [14, 15] by exploiting time-dependent couplings, dual-rail encodings or
other similar schemes. Our questions for further study are: (i) possible extensions of the
present scheme to include a multimode boson environment since our results can cover only
approximately the multimode case, (ii) connections of QST to wave propagation in media
also in the presence of disorder which can also give ballistic, chaotic and even localized states
(in the latter case QST is impossible) and (iii) possible realization of an experiment where
QST mediated by bosons can occur, for example, between two quantum dots coupled to an
appropriate phonon environment of a nanostructure.
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Appendix. Derivation of the formula for the fidelity

The average fidelity

F(t) = 1

4π

∫
d	〈ψA|ρB(t)|ψA〉

over |ψA〉 becomes

|ψA〉 = cos

(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉

1

4π

∫
d	.. = 1

4π

∫ π

0
d sin(θ)dθ

∫ 2π

0
dφ . . .

The reduced density matrix ρB(t) can be calculated via

ρB = TrA,E[ρt ]

ρt = U(t, 0)ρ0U(0, t)

U(t, 0) = eiHt

where, the partial trace over the degrees of freedom for qubit A and the quantum channel E is
taken. H is the Hamiltonian for the system A ⊗ B ⊗ E and U(t, 0) is the corresponding time
evolution operator.

To simplify the formula first we have calculated the integral. It is convenient for us to
choose coherent vector representation [16] to express the density matrix,

ρB(t) = 1
2 (1 + �pB(t) · �σ) ρA = 1

2 (1 + �pA · �σ)
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and assuming the relation between the two coherent vectors

�pB(t) = T (t) · �pA + �T0(t)

we can carry out the integral

F(t) = 1
2

[
1 + 1

3T r(T (t))
]
.

We need to calculate the matrix T (t), e.g., to express the final state of qubit B as a function
of initial state of qubit A,

ρB(t) = TrA,E[U(t, 0)ρ(0)U(0, t)]

where ρ(0) is the initial state of the whole system (A ⊗ B ⊗ E). It is separable so that

ρ(0) = ρA(0) ⊗ ρB(0) ⊗ ρE(0)

ρB(0) = |0〉〈0|
ρE(0) = |0〉〈0|.

By inserting |ηA, ηB,m〉 into these formulae we find

ρB(ηB, η′
B, t) =

∑
η̄A,η̄′

A

JB(ηB, η′
B, η̄A, η̄′

A, t)ρA(η̄A, η̄′
A, 0)

JB(ηB, η′
B, η̄A, η̄′

A, t) =
∑
ηA

J (ηAηB, ηAη′
B, t; η̄A0, η̄′

A0, 0)

J (ηAηB, η′
Aη′

B, t; η̄Aη̄B, η̄′
Aη̄′

B, 0) =
∑
m

〈η̄Aη̄B, 0|U(0, t)|ηAηB, 0〉

× 〈η′
Aη′

B, 0|U(t, 0)|η̄′
Aη̄′

B, 0〉,
where ηA/B = 0/1,m = 0, 1, 2, 3, . . . .

The matrix element between ρB(t) and ρA(0) is related by the function JB

T =
⎛
⎝T x(01) + T x(10) i[T x(10) − T x(01)] T x(00) − T x(11)

T y(01) + T y(10) i[T y(10) − T y(01)] T y(00) − T y(11)

T z(01) + T z(10) i[T z(10) − T z(01)] T z(00) − T z(11)

⎞
⎠

where,

T x(ηη′) = JB(01, ηη′) + JB(10, ηη′)
T y(ηη′) = i[JB(10, ηη′) − JB(01, ηη′)]
T z(ηη′) = JB(00, ηη′) − JB(11, ηη′)

By going into the Bell basis the final expression for the fidelity is obtained.
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